Projekt „Reliability Design“ PV- und Batterie-Wechselrichter: Neue Methode für die Zuverlässigkeitsprognose

Verantwortliche:r Redakteur:in: Konstantin Pfliegl 2 min Lesedauer

Anbieter zum Thema

Vom Privathaushaltsgerät bis zum Kraftwerkspark: Wechselrichter werden überall eingesetzt. Fraunhofer-Forscher haben eine neue Methodik für deren Zuverlässigkeits- und Lebensdauerprognose entwickelt.

(Bild:  Suranto / Adobe Stock)
(Bild: Suranto / Adobe Stock)

Wechselrichter werden zwar überall eingesetzt – doch vor allem für moderne Energiesysteme spielen sie eine Schlüsselrolle. Trotz des hohen Qualitätsniveaus, das für diese komplexen Bauteile in den vergangenen Jahren erreicht wurde, kann es auch hier zu Geräteausfällen kommen. Ursachen für Defekte sowie Abläufe von Versagensprozessen sind dabei noch nicht ausreichend gut verstanden. Im Projekt „Reliability Design“ unterstützt das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen (IMWS) die Entwicklung präziserer Methoden für Lebensdauervorhersagen. Das kann auch die Kosten der Stromproduktion senken.

Rasterelektronenmikroskopische Abbildung eines geschädigten Relais-Kontaktes nach zyklischer Strombelastung.(Bild:  Fraunhofer IMWS)
Rasterelektronenmikroskopische Abbildung eines geschädigten Relais-Kontaktes nach zyklischer Strombelastung.
(Bild: Fraunhofer IMWS)

Wechselrichter: Wichtig für die Energiewende

Die Bedeutung von Wechselrichtern ist durch die Energiewende noch einmal gestiegen, denn auch für Photovoltaik (PV)-Anlagen, Batteriespeicher wie in der Elektromobilität oder das Energienetz-Management sind sie unerlässlich. Allerdings sind Wechselrichter in solchen Systemen sehr herausfordernden Einsatzbedingungen ausgesetzt: den Einflüssen von Schmutz, Wind und Wetter, hohen Spannungen und einem nahezu pausenlosen Betrieb. Ihre Leistungsfähigkeit und Qualität ist daher von besonderer Bedeutung.

Hochwertige Wechselrichter erreichen trotz dieser Belastungen typischerweise eine Lebensdauer von 20 bis 25 Jahren. Welche Bauweisen, Materialien und Auslegungen dies sicherstellen, ist aber noch weitgehend unbekannt, zumal für Anwendungsszenarien wie der Photovoltaik oder Elektromobilität noch relativ wenig Erfahrungswerte vorliegen. Deshalb werden die Wechselrichter mit Sicherheitszuschlägen gefertigt und im Zweifel „überdimensioniert“: Hersteller setzen auf Produktionsverfahren und Werkstoffe, mit denen die nötige Robustheit zu erwarten ist, allerdings ohne ein vertieftes Verständnis von Alterungsprozessen, Ausfallmechanismen oder Defektrisiken für die einzelnen Bauteile innerhalb eines Wechselrichters. Das bringt entsprechende Mehrkosten mit sich.

Präzise Methodik für Vorhersagen

Im Projekt „Reliability Design“ haben die SMA Solar Technology AG , die Electronicom Kondensatoren GmbH, die MERZ Schaltgeräte GmbH, das Institut für Maschinenelemente der Universität Stuttgart und das Fraunhofer IMWS zusammengearbeitet, um das bisherige Erfahrungswissen durch wissenschaftlich fundierte Daten, Modelle und Messverfahren zu untermauern und zu erweitern. Im Ergebnis steht nun eine effiziente und präzise Methodik für die Zuverlässigkeits- und Lebensdauer-Vorhersage von Photovoltaik- und Batteriewechselrichtern und ihren kritischen Bauteilen zur Verfügung – und somit eine noch bessere Grundlage für deren verlässlichen Betrieb über die gesamte Lebensdauer.

Durch häufig eigens entwickelte Test-Setups wurde im Projekt unter Laborbedingungen eine Vielzahl von Defekten und Degradationsmechanismen gezielt provoziert, bei der jeweils auch Materialwechselwirkungen im Gerät, wechselnde elektrische Belastung oder Standortfaktoren wie saisonale Temperatur- und Feuchtigkeitsschwankungen oder korrosive Medien wie Salznebel berücksichtigt wurden. Zugleich erfolgte eine Bewertung, welche dieser Phänomene auch für den Einsatz im Feld und für den zuverlässigen Betrieb tatsächlich relevant sind, etwa durch einen Abgleich mit defektfrei im Feld gealterten Komponenten und Bauteilen.

Die gewonnenen Erkenntnisse betreffen etwa Risse in Keramikschichten, wodurch die Isolationsfestigkeit von Leistungsmodulen gefährdet werden kann, Bildung von Oxidschichten, Demetallisierung, Polymerdegradation, thermische Schädigung durch Überspannung, Lotdegradationen aufgrund thermomechanischer Belastungszyklen, kristalline Ablagerungen, lokale Aufschmelzungen, Kontaminationen mit Fremdmaterial oder das Versagen von Gehäusekomponenten.

Die Ergebnisse der Analysen an Folienkondensatoren wurden in einem Fehlerkatalog zusammengefasst, der eine Übersicht zu Ausfallarten, Fehlermerkmalen, Fehlertyp und Fehlerursachen bietet. Ergänzend wurden numerische Simulationsansätze für ein erweitertes Verständnis der Physics of Failure eingesetzt, um beispielsweise lokale Stromdichte- und Verlustwärmeverteilungen in Schaltern zu ermitteln.

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung